

Advanced IT Solutions for Oil & Gas Downstream Operations

Science-Driven Digital Transformation

33 years in the Market

| Russian | Technology | Leader

300 experts

process engineers

mathematicians

developers

60 projects annually

Advanced IT Solutions for Oil & Gas Enterprises

2 500 active users per site

NAUKA Digital Production Management Suite

Technology Stack

Core Modules

- O1 Production Accounting
- O2 Production Planning & Optimization
- 03 Process Simulation
- 04 Energy efficiency management
- 05 Material Flow Dispatching
- 06 Integrated Operating center

Production Accounting

business goal and use cases

description

components

- Production Planning & Optimization
- **Process Simulation**
- Energy efficiency management
- Material Flow Dispatching
- Integrated Operating center

Production Accounting & Real-Time Plan Compliance

Client Use Cases:

- Material balance calculation

 Feedstock → Process → Product & Losses
- Data integration with planning systems
- Real-time plan adherence monitoring
- Operational deviation control
- Loss identification and root-cause analysis
- Incident investigation workflows

Description

Technical Note:

Supports reconciliation of 10,000+ instrument tags with <1 min latency (proven at 20M ton/year refineries).

System Components

Core Modules

Production Flow Modeling

Dynamic simulation of material and energy streams

Calculation Algorithm Editor

Customizable logic for balance and optimization tasks

NAUKA Optimizer

Proprietary solver for LP/MIP problems

Data Integrity Tools

Completeness & Validity Analyzer

Automated data quality checks

Daily Balance Reconciliation Engine

Closed-loop adjustment system

02

Production Planning & Optimization

business goal and use cases

description

outcomes & benefits

- 03 Process Simulation
- 04 Energy efficiency management
- 05 Material Flow Dispatching
- 06 Integrated Operating center

Optimal production plan generation

Client Use Cases:

- Optimal production plan selection
- Feedstock and product optimization
- Blending optimization
- Investment project justification
- Data generation for scheduling and dispatching systems

Description

Objective function

Outcomes and benefits

Outcomes

- Multi-period planning
- Constraint management (process, energy, economic)
- Crude oil assay utilization
- Optimal blending
- NAUKA-developed solvers

Benefits

- Savings up to 2M RUB (25K USD)/day on energy resources at 18M ton/year feedstock capacity
- Minimized fuel additive usage
- Increased margin
- Reduced planning time

- O1 Production Accounting
- O2 Production Planning & Optimization

03

Process Simulation

business goal and use cases

functionality

user interface

capabilities

- 04 Energy efficiency management
- 05 Material Flow Dispatching
- 06 Integrated Operating center

Business Goal

Process Digital Twin — Advanced tool for decision making

Client Use Cases:

- Process optimization assessment
- Bottleneck identification
- Improved planning accuracy
- "What-if" scenario simulation
- Efficient process management

Functionality

Component Database

- 1,800 individual components
- Binary compositions of components
- Multiple component lists per scheme

Property Packages

• Physicochemical dependencies for thermodynamic parameter calculations

Solvers

Mathematical calculation engine

Models

- Library of typical unit operations (pumps, heat exchangers, etc.)
- Kinetic models for catalytic reactor blocks

Utilities

- Logical operators for scheme calculations (recycle, balance, optimizer)
- Calculation services (spreadsheet)
- Analytical services (case studies)

Fluid Manager

- Molecular characterization
- Fraction yield potential calculation
- Hypothetical components and properties

User interface

Capabilities

- 1 Optimization of individual processes
- 2 Production chain optimization
- Real-time database integration
- 4 LP vector generation for planning systems
- GAIN matrix generation for online process optimization
- 6 CAPE-OPEN, SDK support for embedding third-party models
- Vendor file format support (HYSYS, Petro-SIM) for model reuse/integration
- 8 On-premise / cloud software deployment

- 01 Production Accounting
- 02 Production Planning & Optimization
- 03 Process Simulation

04

Energy efficiency management

business goal and use cases

platform architecture

capabilities

- 05 Material Flow Dispatching
- 06 Integrated Operating center

Operational monitoring of fuel and energy resource consumption at industrial facilities

Client Use Cases:

- Energy resource consumption tracking and monitoring
- Loss control and root cause analysis of deviations from norms
- Fuel and energy resource consumption benchmarking

Platform Architecture

Energy Accounting Process

Formation of consolidated energy consumption reports

Algorithm development for real-time monitoring calculations

Energy distribution scheme design and calculation methodology

Energy Efficiency Process

Enterprise-grade expert reporting systems

Analytics and indicators for energyefficient resource consumption

Energy distribution scheme optimization methodologies

Energy Management Process

Expert monitoring of process energy efficiency

Energy efficiency improvement proposal generation and ROI evaluation

Key Performance Indicator (KPI) tracking from enterprise to unit level

Capabilities

- Monitoring and analysis of fuel/energy resource consumption (electricity, liquid/gaseous fuels, steam, cooling water, etc.)
- Timely deviation detection in energy consumption volumes
- Rapid response to energy consumption fluctuations
- 4) Optimal fuel/energy consumption norm establishment
- (5) Technological compliance monitoring against regulatory standards
- (6) Equipment performance analysis (e.g., furnace efficiency monitoring)

- O1 Production Accounting
- O2 Production Planning & Optimization
- 03 Process Simulation
- 04 Energy efficiency management

05

Material Flow Dispatching

business goal and use cases

user interface

benefits

06 Integrated Operating center

Enhancing dispatch operation effectiveness in industrial facilities

Client Use Cases:

- Supervision of transitional process protocols (startup/shutdown/mode switching)
- Abnormal situation root cause analysis
- Improved plant-wide material balance accuracy
- Material flow discrepancy identification
- Personnel training and competency development

User interface

Operational Benefits

- Reduced dispatching labor effort
- (Enhanced production monitoring effectiveness
- Personnel upskilling
- Compliance control for transitional processes
- (Improved abnormal situation analysis
- (Higher accuracy in plant material balance calculations
- Faster material flow data reconciliation

- O1 Production Accounting
- O2 Production Planning & Optimization
- 03 Process Simulation
- 04 Energy efficiency management
- 05 Material Flow Dispatching

06

Integrated Operating center

business goal and use cases

advantages

user interface

benefits

Decision Support System for Enterprise Management

Client Use Cases:

- Real-time data integration from DCS/SCADA and MES systems
- Visualization and KPI tracking for operational excellence
- Production activity and product shipment monitoring
- Decision-making support for normal/abnormal situations
- Mitigation of technology risks impacting financial performance
- Optimization of planned task execution
- Energy resource consumption analysis and optimization
- Maintenance planning (PPM/PdM) optimization

Solution Advantages

1 Extensible visualization component library

- Seamless integration with DCS/MES data sources
- 3 Knowledge base development tools

- 4 Customizable production performance metrics
- Configurable information dashboards

Role-based data presentation for decision-makers

User interface

User interface

Operational Benefits

- Faster incident detection and response (MTTR reduction)
- Root cause analysis acceleration
- (Enhanced cross-functional team collaboration
- (Improved operational decision velocity
- Resource consumption optimization (energy/raw materials)
- Equipment maintenance cost reduction

Workforce Development

Solution: Academic licenses for NAUKA.Proxima & NAUKA.Plan

- Cloud access
- Role-based access control
- Load testing for core stability
- Real-production training datasets

Future Roadmap:

- New mathematical model deployment
- LP-vector generation from NAUKA.Proxima to NAUKA.Plan

Current Status:

- 2 university partners
- Multiple organizations in pilot phase

SNAUKA

Digital Transformation for Process Industries

