

Система моделирования технологических процессов «NAUKA.Proxima»

Руководство пользователя

ред. 1.2

2024 г.

Оглавление

1	Со	кращения и упрощения	3
2	06	щие сведения	4
3	Pa	бота с Proxima	5
	3.1	Авторизация	5
	3.2	Стартовая страница системы	5
	3.3	Создание схемы	7
	3.4	Редактировать карточку схемы	B
	3.5	Удалить схему	9
	3.6	Описание рабочего пространства1	D
	3.7	Создание списка компонентов1	1
	3.8	Настройка базиса схемы1	3
	3.9	Добавление объектов на доску моделирования14	4
	3.10	Добавление соединения между объектами1	5
	3.11	Удаление соединения между объектами1	5
	3.12	Контекстное меню1	7
		3.12.1 Свойства объекта1	7
		3.12.2 Отчет об объекте1	3
		3.12.3 Блокировать/Снять блокировку объект	9
		3.12.4 Переименовать объект	0
		3.12.5 Удалить объект2	1
	3.13	Журнал приложения	2
	3.14	журнал событии	3
	3.15	Ошибки в карточках объектов24	4
4	На	стройка объектов Proxima2	5
	4.1	Объект «Материальный поток»2	5
	4.2	Объект «Ректификационная колонна»2	7
	4.3	Объект «Нагреватель»	4
	4.4	Объект «Холодильник»	5
	4.5	Объект «Смеситель»	8
	4.6	Объект «Делитель»З	9
	4.7	Объект «Насос»	1
	4.8	Объект «Клапан»	3
	4.9	Объект «Сепаратор»4	5
5	Ко	нтактная информация4	7

1 Сокращения и упрощения

В руководстве используются следующие сокращения:

- БД база данных;
- ЛКМ левая кнопка мыши;
- ПК персональный компьютер;
- ПКМ правая кнопка мыши;
- СМТП система моделирования технологических процессов.

В руководстве используются следующие термины:

- список компонентов список химических компонентов материального потока;
- термодинамический пакет метод расчета фазового равновесия;
- базис совокупность химических компонентов материального потока и термодинамического пакета для расчета фазового равновесия и физических свойств;
- доска моделирования пространство моделирования технологических процессов.

2 Общие сведения

Система моделирования технологических процессов «NAUKA.Proxima» (далее – СМТП «NAUKA.Proxima», Proxima, Система) предназначено для симуляции процессов в переработке нефти и газа.

В системе можно создавать схемы технологических процессов, задавать списки компонентов, настраивать базис. Для расчета термодинамических процессов в системе используется пакет Пенг-Робинсон.

Proxima имеет палитру объектов, в которую входят следующие элементы:

- материальный поток (раздел 4.1);
- ректификационная колонна (раздел 4.2);
- нагреватель (раздел 4.3);
- холодильник (раздел 4.4);
- смеситель (раздел 4.5);
- делитель (раздел 4.6);
- насос (раздел 4.7);
- клапан (раздел 4.8);
- сепаратор (раздел 4.9).

3 Работа с Ргохіта

3.1 Авторизация

Компания разработчик (ООО «Наука») разворачивает экземпляр системы персонально для каждого коммерческого решения. В дополнительном соглашении сторон к заключенному договору указывается адрес сайта и данные для авторизации в личном кабинете (логин и пароль).

Чтобы авторизоваться в системе необходимо выполнить следующие действия (Рисунок 1):

- Используя клавиатуру, заполнить поля: «Логин или электронная почта» [1] и «Пароль» [2];
- Нажать «**Войти**» [3].

Вход в систему	
1 Логин или электронная почта	
2 Пароль	
Забыли пароль?	3 Войти

Рисунок 1 – Окно авторизации

После авторизации на экране откроется стартовая страницы системы (Рисунок 2). Для выхода из Proxima необходимо нажать кнопку выхода из аккаунта [1] и «Выйти» [2] (Рисунок 2). После выхода откроется окно авторизации (Рисунок 1).

Поиск	Справочник С
Проекты / Схемы Все схемы проекта IS_KINEF	Выйти Создать схему

Рисунок 2 – Выход из аккаунта

3.2 Стартовая страница системы

Стартовая страницы системы (Рисунок 3) содержит информацию о всех созданных схемах в Proxima. Схемы представлены в виде карточек с наименованием, описанием и сигнатурой схемы, а также с миниатюрой спроектированной схемы.

На стартовой странице также представлены следующие функциональные кнопки (Рисунок 3):

- [1] Карточка схемы, при нажатии на нее, открывается схема для просмотра и редактирования;
- [2] Поле поиска схем по проекту;
- [3] Открывает форму создания схемы;
- [4] Открывает схему для просмотра и редактирования;
- [5] Открывает форму редактирования схемы;
- [6] Удаляет схему после подтверждения;
- [7] Открывает форму со справочной информацией (находится в разработке).

Рисунок 3 – Стартовая страница «NAUKA.Proxima»

3.3 Создание схемы

Создать схему в системе можно нажав «**Создать схему**» [3] (Рисунок 3) и заполнив обязательные поля формы (Рисунок 4):

- Название схемы [1];
- Описание схемы [2];
- Сигнатура [3] генерируется автоматически, является уникальным номером;

Для завершения создания схемы необходимо нажать «**Создать**» [4]. «**Отмена**» [5] сбрасывает введенные данные и закрывает форму.

Создание схем	ы
Основные	Название схемы *
	Описание схемы 2
	Сигнатура * З Уникальный ключ схемы
	5 Отмена Создать 4

Рисунок 4 – Создание схемы

Созданная схема появится в списке схем на стартовой страницы системы. Для быстрого поиска нужной схемы можно воспользоваться полем поиска [1] (Рисунок 5) или найти схему пролистыванием списка.

Рисунок 5 – Поиск созданной схемы

3.4 Редактировать карточку схемы

На стартовой странице системы представлен список схем в виде карточек. Карточку схемы можно изменить, а именно можно изменить название и описание схемы. Для этого необходимо нажать «**Редактировать**»[1] (Рисунок 6).

Рисунок 6 – Редактировать карточку схемы

Откроется форма «Редактирование схемы» (Рисунок 7), в которой можно изменить: «**Название схемы**» [1] и «**Описание схемы**» [2].

Чтобы сохранить введенные изменения необходимо нажать «**Сохранить**» [3] (Рисунок 7). «**Отмена**» [4] сбрасывает введенные изменения и закрывает форму.

Редактирование схемы	~
Основные Название схемы * Неater1 Описание схемы Описание схемы Описание схемы Описание схемы Описание схемы Описание схемы Сохранить]

Рисунок 7 – Форма редактирования карточки схемы

3.5 Удалить схему

На стартовой странице можно удалить любую схему из системы. Для этого необходимо нажать по иконке корзины [1] (Рисунок 8) в карточке схемы, которую нужно удалить.

Рисунок 8 – Удалить схему

Откроется форма подтверждения удаления (Рисунок 9). Чтобы удалить схему безвозвратно нужно нажать «**Удалить**» [1]. «**Отмена**» [2] закроет форму и схема не удалиться.

Рисунок 9 – Подтверждение удаления

3.6 Описание рабочего пространства

Для перехода в рабочее пространство схемы «Схема для расчета» необходимо нажать «**Перейти**» [2] или по миниатюре [1] (Рисунок 10).

Рисунок 10 - Переход к рабочему пространству схемы «Схема для расчета»

Рабочее пространство схемы включает (Рисунок 11):

- [1] Доска моделирования (общее пространство для размещения объектов);
- [2] Кнопка «Добавить объект» раскрывает палитру объектов;
- [3] Информация о схеме (название и описание);
- [4] Кнопка редактирования схемы;
- [5] Кнопка просмотра журнала приложения;
- [6] Поле поиска объектов на схеме;
- [7] Кнопка выхода из рабочего пространства схемы на стартовую страницу;
- [8] Кнопки назад/вперед;
- [9] Журнал событий.

Рисунок 11 - Рабочее пространство схемы «Схема для расчета»

3.7 Создание списка компонентов

Перед запуском расчета схемы необходимо создать список компонентов. Для этого выполнить следующее (Рисунок 12):

- В рабочем пространстве нажать кнопку редактирования схемы [1];
- Перейти на вкладку «Списки компонентов» [2];
- Нажать «Добавить» [3].

Добавить объект » Схе	ема для расчета 🖉 🚺 на нужна для расчета показателей модинамики	Журнал приложения	🗧 К списку охем С
Редактирование Основные Списки компон Базис	схемы + Добавить 3		×
√ [9] (Закрыть 2418:10:36

Рисунок 12 – Добавить список компонентов

Откроется форма создания списка компонентов для схемы (Рисунок 13) необходимо ее заполнить:

- Ввести название списка в поле «Название списка» [1].
- В правом списке [2] выбрать компоненты. Для выбора компонента нужно установить флаг в чек-бокс [3].

Найти компонент можно пролистыванием списка или воспользоваться строкой поиска [4]. Список может состоять из нескольких страниц [5].

- Нажать «**Добавить**» [6], чтобы добавить выбранные компоненты в создаваемый список (располагается слева [7]).
- Для завершения нажать «Создать» [8]. «Отмена» [9] закрывает форму и не сохраняет список.

Если компонент добавлен в список случайно, можно выбрать его в левом списке [7] (установить флаг в чек-боксе) и нажать «Удалить» [10].

Символ креста [11] закрывает форму и не сохраняет введенные данные.

Добавлять и удалять компоненты можно по одному или по несколько одновременно.

Название списка: *	Компоненти	ы для схемы расчета				
□ ∨ 1 элем.	7 Выб	ранные компоненты) ∨ 1/12 элем.	Справочни	к компоненто
Q. Поиск			C	🔍 вод		8
Название	Синоним	Формула	•	Название	Синоним	Формула
фреон-702	Refrig-702	H2	6	о-водород	o-Hydrogen	H2
		< 1 >	Добавить	п-водород	p-Hydrogen	H2
			10	годород	Hydrogen	H2
				Сероводород	H2S	H2S
				хлороводород	HCI	HCI 5
						< 1 2 2
				лерессдород	Отмена	

Рисунок 13 - Создание списка компонентов

Созданный список [1] появится на вкладке «Списки компонентов» формы «Редактирование схемы» (Рисунок 14). Его можно открыть для редактирования [2] и удалить [3]. При нажатии иконки [3] появится форма [4] подтверждения удаления списка, нужно нажать «Удалить» [5] для подтверждения или «Отмена» [6].

Редактирование схемы		×
Основные	+ Добавить 2 4	
Списки компонентов	Компоненты для схемы ; 2 1 вы уверены, что хотите удалить компонент?	
Базис	6 5	
		Закрыть

Рисунок 14 - Созданный список компонентов

3.8 Настройка базиса схемы

После создания списка компонентов необходимо настроить базис схемы. Для этого необходимо (Рисунок 15):

- В рабочем пространстве нажать кнопку редактирования схемы [1];
- Перейти на вкладку «Базис» [2];
- Заполнить форму базиса схемы (все поля обязательны для заполнения):
 - [3] Поле для ввода названия базиса;
 - [4] Выпадающий список для выбора термодинамического пакета;
 - [5] Выпадающий список для выбора списка компонентов;
 - [6] Расчет энтальпии (заполняется автоматически);
 - [7] Расчет плотности жидкости (заполняется автоматически);
 - [8] Выпадающий список для выбора параметров уравнения состояния.

Для завершения нажать «**Сохранить**» [9]. «**Отмена**» [10] закрывает форму и не сохраняет базис.

ть объект » Схема для ра Схема нужна для термодинамики	асчета Драсчета п	онал приложения Q. Найти объект на схеме	🔶 К списку схе
Редактирование схемы			×
Основные	Название: *	Базис схемы для расчета 3)
Списки компонентов	Выбранный пакет: *	Пенг-Робинсон)
Базис	Список компонентов: *	Компоненты для схемы расчета 🗸 5)
	Расчет энтальпии:	Пенг-Робинсон 6)
	Расчет плотности жидкости:	7)
	Параметры уравнения состояния: *	HYSYS V 8)
		Отмена	Сохранить 9

Рисунок 15 – Настройка базиса схемы

3.9 Добавление объектов на доску моделирования

Для добавления объектов на доску моделирования необходимо нажать **«Добавить объект**» [1] (Рисунок 16). В левой части экрана откроется палитра объектов [2] (Рисунок 16).

Объект можно найти воспользовавшись строкой поиска [3] (Рисунок 16) или пролистыванием. Объекты разделены на группы и для выбора объекта необходимо раскрыть группу нажатием по ней [4] (Рисунок 16). Сворачивание группы происходит тем же образом, нужно нажать по раскрытой группе [5] (Рисунок 16).

Чтобы добавить выбранный объект на доску необходимо зажать ЛКМ на объекте [6] (Рисунок 16) и перетащить его на нужное место доски.

Когда объект добавляется на доску моделирования Система отображает сообщение «Схема сохранена» [7] (Рисунок 16) в журнале событий.

Чтобы свернуть палитру объектов необходимо нажать по кнопке с изображением стрелок, указывающих влево [8] (Рисунок 16).

Рисунок 16 – Добавить объект на доску

В случае необходимости выделить несколько объектов на схеме можно зажать «Shift» на клавиатуре, зажать ЛКМ и выделить нужные объекты на доске.

3.10 Добавление соединения между объектами

Соединение моделей всегда должно происходить через поток, то есть через объект «Материальный поток» [1] (Рисунок 17). Нельзя соединить входной порт с входный портом и выходной порт с выходным портом. Соединение возможно только выходного порта модели с входным портом потока или выходного порта потока с входным портом потока или выходного порта

Рисунок 17 - Соединение объектов на доске

Для соединения выходного порта модели с входным портом потока необходимо зажать ЛКМ на правой части модели и потянуть до левой части потока (Рисунок 18).

Рисунок 18 - Соединение модели с потоком

Для соединения выходного порта потока с входным портом модели необходимо зажать ЛКМ на правой части потока и потянуть до левой части модели (Рисунок 19).

Рисунок 19 - Соединение потока с моделью

3.11 Удаление соединения между объектами

Для удаления соединения необходимо:

- зажать «Shift» на клавиатуре;
- выбрать соединение, которое необходимо удалить (оно подсветится пунктирной линией);
- нажать «Delete» на клавиатуре.

Рисунок 20 – Удалить соединение между объектами

Или:

- Нажать ПКМ по соединению;
- Нажать «Удалить» [1] (Рисунок 21).

Рисунок 21 – Удалить соединение между объектами

На экране появится окно (Рисунок 22) для подтверждения удаления соединения. Для подтверждения необходимо нажать «**Удалить**» [1]. Для отмены удаления нажать «**Отмена**» [3] или по иконке креста [2].

Рисунок 22 - Подтвердить удаление соединения

3.12 Контекстное меню

На доске моделирования для каждого объекта можно вызвать контекстное меню [2] (Рисунок 23). Для этого нужно нажать ЛКМ по объекту [1] (Рисунок 23).

Рисунок 23 - Вызов контекстного меню

3.12.1 Свойства объекта

При выборе пункта «**Свойства объекта**» [1] (Рисунок 24) контекстного меню объекта открывается форма настройки данного объекта (карточка объекта). У каждого типа объекта своя карточка. Подробно про все карточки описано в разделе 4 данного руководства.

Рисунок 24 - Свойства объекта

3.12.2 Отчет об объекте

При выборе пункта «**Отчет**» [1] (Рисунок 25) контекстного меню объекта открывается подробный отчет об объекте после расчета. Отчет формируется для всех моделей автоматически после заполнения формы «**Свойства объекта**».

Рисунок 25 – Отчет объекта

Отчет для объекта «**Колонна**» отображает параметры, которые присутствуют в карточке объекта и те, которые в карточку не попали. Например, описываются профили колонны (Рисунок 26).

Профили колонны								
Ступень	Температура	Температура	Давление,	Расход жидкости,	Расход паров,	Сырье,	Отбор,	Нагрузка,
	жидкости, °С	паров, °С	кПа	кмоль/ч	кмоль/ч	кмоль/ч	кмоль/ч	кДж/ч
Конденсатор	30.45		1900.0	63.36	109.3		78.0	1.982e+6
Ступень 1	58.08	59.69	2180.0	187.3	282.3	100.8		
Ступень 2	62.4	63.4	2184.0	259.5	288.8			
Ступень 3	65.06	65.74	2187.0	266.0	292.5			
Ступень 4	66.87	67.37	2191.0	269.7	294.8			
Ступень 5	68.19	68.61	2194.0	272.0	296.1			
Ступень б	69.25	69.65	2198.0	273.3	296.8			
Ступень 7	70.21	70.62	2201.0	274.0	297.0			
Ступень 8	71.17	71.64	2205.0	274.2	296.8			
Ступень 9	72.22	72.78	2209.0	274.0	296.2			
Ступень 10	73.45	74.14	2212.0	273.4	295.1			I Í

Рисунок 26 – Отчет колонны

3.12.3 Блокировать/Снять блокировку объект

При выборе пункта «**Блокировать/Снять блокировку**» [1] (Рисунок 27) контекстного меню объекта происходит блокировка выбранного объекта на доске моделирования.

Рисунок 27 – Блокировать/Снять блокировку

При заблокированном объекте рядом с ним появляется символ закрытого замка (Рисунок 28) и этот объект нет возможности перемещать по доске.

Рисунок 28 – Объект заблокирован на доске

Чтобы вернуть возможность перемещать объект по доске, необходимо еще раз вызвать контекстное меню и выбрать пункт «Блокировать/Снять блокировку».

3.12.4 Переименовать объект

При выборе пункта «**Переименовать**» [1] (Рисунок 29) контекстного меню объекта предоставляется возможность переименовать выбранный объект.

Рисунок 29 – Переименовать объект

Открывается форма (Рисунок 30) с полем для ввода нового имени для объекта. Для подтверждения необходимо нажать «**Подтвердить**» [1] или на клавиатуре «Enter». «**Отмена**» [2] закрывает форму и не сохраняет введенные изменения. Новое имя появится ниже объекта на доске моделирования.

Рисунок 30 - Переименование объекта

3.12.5 Удалить объект

При выборе пункта «**Удалить**» [1] (Рисунок 31) контекстного меню объекта можно удалить объект с доски моделирования. Также объект с доски можно удалить кликнув на него ЛКМ и нажав «Delete» на клавиатуре.

Рисунок 31 - Удалить

На экране появится форма подтверждения удаления объекта с доски моделирования (Рисунок 32). Для подтверждения необходимо нажать «**Удалить**» [1]. Для отмены нажать «**Отмена**» [3] или по иконке креста [2].

Рисунок 32 - Подтвердить удаление

3.13 Журнал приложения

Журнал приложения заполняется автоматически при запуске расчета созданной схемы. Он открывается с рабочего пространства схемы. Для этого необходимо нажать «**Журнал приложения**» [1] (Рисунок 33).

Журнал приложения отображает информацию о ходе расчета. Первой строкой всегда будет информация о времени начала расчета. Последней строкой – время завершения расчета и общее время затраченное на расчет.

Чтобы закрыть журнал приложения можно нажать «Закрыть» [3] или по иконке креста [2] (Рисунок 33).

Добави	ть объект ≫ Неаte Описани	r1 🖉	Журнал приложения 🕂 Найти объект на схеме 🧲 К списку схем
			2 🗵
	Время начала	Время выполнения	Сообщение
1.	2024-04-17 11:53:59.047		Расчет начат
2.	2024-04-17 11:53:59.047		Начало загрузки БД свойств
3.	2024-04-17 11:53:59.047		Загружена БД свойств
4.	2024-04-17 11:53:59.047		Развертывание и инициализация модели
5.	2024-04-17 11:53:59.048		Модель готова к прогону
6.	2024-04-17 11:53:59.048		Ядро: Подготовка к расчету модели
7.	2024-04-17 11:53:59.048		Параметры расчета MAXToldSumConc = 1.0E-6 MAXStepsTbPb = 50 MAXdSumConc = 2.0E-11 MAXdH = 1.0E-9 MAXdeltaAB = 1.0E-15 AutoCalc = true hysysConstants = true Phases3Eps = 1.0E-10
8.	2024-04-17 11:53:59.049		Ядро: размер задачи - объектов 1, потоков 2
9.	2024-04-17 11:53:59.049		Ядро: процесс начат
10.	2024-04-17 11:53:59.049		Ядро: начат расчет объекта Поток
11.	2024-04-17 11:53:59.049		Фазовое равновесие потока Поток рассчитано (PT, MOLAR, MOLAR_FRACTION)
12.	2024-04-17 11:53:59.049		Ядро: начат расчет объекта Поток
13.	2024-04-17 11:53:59.049		Недостаточно данных для расчета равновесия
14.	2024-04-17 11:53:59.049		Фазовое равновесие потока Поток не рассчитано (NOT_SPECIFIED, MASS, MASS_FRACTION)
15.	2024-04-17 11:53:59.049		Ядро: начат расчет объекта Нагреватель
16.	2024-04-17 11:53:59.049		Расчет нагревателя Нагреватель отложен, входящий поток не был рассчитан
17.	2024-04-17 11:53:59.049		Ядро: расчет выполнен за число проходов 1
18.	2024-04-17 11:53:59.05	0.003c	Расчет окончен
19.	2024-04-17 11:53:59.05	0.003c	Общее время
			Закрыть 3

Рисунок 33 – Журнал приложения

3.14 Журнал событий

Журнал событий сопровождает работу на доске моделирования. При попытке соединить: выходной порт с выходным портом, модель с моделью, материальный поток с материальным потоком и прочие похожие ситуации, журнал событий выводит сообщения об ошибке [1] (Рисунок 34).

Рисунок 34 – Ошибка соединения объектов

При клике на сообщение раскрывается весь журнал событий за текущую сессию (Рисунок 35). Чтобы скрыть журнал событий нужно нажать **«Журнал событий [n]**» [1] (Рисунок 35). Журнал событий можно очистить нажав **«Очистить журнал событий**» [2] (Рисунок 35).

Добавить объект »	Схема для расчета 🖉 Схема нужна для расчета показателей термодинамики	Журнал приложения	іти объект на схеме	К списку схем
	~ 1	$\bigcirc \bigcirc \bigcirc$		
 Журнал событий [8] 			2	Очистить журнал событий
3 🛞 Ошибка соедин	ения Модель можно связать только с по	током или поток с моделью		17.04.202419:13:16
4 🛞 Ошибка соедин	ения Нельзя связать выходной и выходн	юй порты		17.04.202419:13:23
5 🛞 Ошибка соедин	ения Разрешено не более 1 соединения	(соединений).		17.04.202419:13:35
6 🛛 Сохранение С	кема сохранена			17.04.202419:15:27
7 🛇 Соединение Со	рединение установлено.			17.04.202419:15:29

Рисунок 35 – Журнал событий

3.15 Ошибки в карточках объектов

При запуске расчета через карточки объектов (подробное описание карточек объектов приведено в разделе 4) могут возникать различные ошибки, касающиеся именно настроек карточек. Описание ошибок отображаются внизу карточек [1] (Рисунок 36 и Рисунок 37).

Нагреватель: Т-2			×
Проект			
Подключения			×
	Перепад давления [кПа]	Нагрузка [кДж/ч]	
	Нагрев [°C]	Мощность [кВт]	
Расчет нагревател	я Т-2 невозможен. Подключите сырьевой	поток	Применить

Рисунок 36 – Пример ошибки в карточке объекта «Нагреватель»

Сепаратор: С-2			×
Проект			
Подключения		Пар	→
	· ·	Перепад давления пара [кПа]	
		Жидкость	\checkmark
		Перепад давления жидкости [кПа]	
Decuer comence			
Расчет сепарато	эра с-2 невозможен. подключите сырьевой поток		Применить

Рисунок 37 - Пример ошибки в карточке объекта «Сепаратор»

4 Настройка объектов Proxima

4.1 Объект «Материальный поток»

Объект «Материальный поток» (Рисунок 38) является обязательным объектом любой схемы. Все модели соединяются между собой через поток. Нельзя соединить поток с потоком. Соединить возможно только поток с моделью и модель с потоком.

Рисунок 38 - Иконка объекта «Материальный поток»

Карточка объекта «Материальный поток» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «Свойства объекта». Карточка «Материальный поток» состоит из двух разделов и шести вкладок.

В первую очередь можно настроить состав потока. Для этого перейти в раздел «Состав» [1] (Рисунок 39) и выбрать подходящую вкладку:

- Массовая доля компонента (Доля);
- Мольная доля компонента (Доля);
- Массовый расход компонента (кг/ч);
- Мольный расход компонента (кмоль/ч).

Определить состав потока нужно только на одной из вкладок.

Материальный пото	Материальный поток: 1					
Модель Состав	0					
Массовая доля компонента [Доля]	Сумма:	1,0000			4 Очистить	
Мольная доля	Компоненты	Поток	Пар	Жидкость	Тяж.жидкость	
компонента [Доля]	фреон-702а	0,5000				
Массовый расход	бериллий	0,2500				
KOMHOHEHTä [KI/4]	водород	0,0000				
Мольный расход компонента	тяжёлая вода	0,2500				
[кмоль/ч]						
					Применить	

Рисунок 39 – Раздел «Состав» вкладка «Массовая доля компонента»

Для редактирования доступны поля, которые подсвечиваются голубым цветом [2] (Рисунок 39). В процессе ввода значений потока по компонентам в поле «**Сумма:**» [3] (Рисунок 39) автоматически суммируются все введенные значения. Сумма не должна быть больше и меньше единицы (1,0000).

Все введенные значения можно сбросить нажав «Очистить» [4] (Рисунок 39).

Объект «Материальный поток» поддерживает 4 сценария расчета:

- 1. Расчет при задании температуры, давления и расхода;
- 2. Расчет при задании температуры, доли пара и расхода;
- 3. Расчет при задании доли пара, давления и расхода;
- 4. Расчет при задании энтальпии, давления и расхода.

Сценарий расчета задается в разделе «Модель» [1] на вкладках «**Условия**» [2] и «**Свойства**» [4] (Рисунок 40). Необходимо ввести параметры потока согласно выбранному сценарию расчета.

М альный поток: 0-43					×	
Модель	Состав					
Условия	2	Свойства	Поток	Пар	Жидкость	Тяж.жидкость
Свойства	4	Мольная доля отгона / мольная доля фазы [Доля]	0,0000		0,0000	
		Температура [°C]	20		20	
		Давление [кПа]	2210		2210	
		Массовый расход [кг/ч]	5650		5650	
		Мольный расход [кмоль/ч]	100,8		100,8	
		Объёмный расход [м3/ч]	9,926		9,926	
					3	Применить

Рисунок 40 - Раздел «Модель» вкладка «Условия»

После настройки необходимо нажать «**Применить**» [3] (Рисунок 40). Результат расчета появится на вкладках «**Условия**» [2] и «**Свойства**» [4] (Рисунок 40).

4.2 Объект «Ректификационная колонна»

Ректификационная колонна (Рисунок 41) в Proxima поддерживает:

- Ввод одного и более потоков с указанием тарелки питания;
- Расчет колонны при полном и парциальном конденсаторах;
- Учет переохлаждения при расчете колонны;
- Расчет флегмового числа;
- Расчет колонны и потоков дистиллята, газа (при наличии) и кубового продукта;
- Расчет колонны с боковыми отборами с указанием тарелок отбора, а также потоков боковых отборов;
- Расчет нагрузки конденсатора и рибойлера.

Рисунок 41 – Иконка объекта «Ректификационная колонна»

Карточка объекта «**Ректификационная колонна**» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «**Свойства объекта**». Карточка «**Ректификационная колонна**» состоит из четырех разделов и восьми вкладок.

В первую очередь необходимо настроить параметры расчета в разделе «Проект» [1] на вкладке «Подключения» [2] (Рисунок 42). Для настройки обязательны следующие параметры (Рисунок 42):

- [3] Давление в конденсаторе, кПа;
- [4] Перепад давления в конденсаторе, кПа;
- [5] Давление в рибойлере, кПа;
- [6] Перепад давления в рибойлере, кПа;

Также можно выбрать выходные потоки для:

[8] – Газа;

- [9] Дистиллята;
- [10] Кубового продукта.

Выходные потоки выбираются из выпадающего списка. Если поток не добавлен на доску моделирования, то его не получится прикрепить к колонне.

Необязательным полем является:

[11] – Температура переохлаждения конденсатора, °С

Рисунок 42 - Раздел «Проект» вкладка «Подключения»

Далее необходимо настроить параметры в разделе «**Проект**» [1] на вкладке «**Спецификация**» [2] (Рисунок 43). Для настройки обязательны следующие параметры (Рисунок 43):

- [3] Отбор газа, кг/ч;
- [4] Расход орошения, кг/ч;
- [5] Отбор дистиллята, кг/ч.

Ректификеционная колонна: К-2		×		
Проект Парамет	тры Боковые отборы Резул	ьтат		
Подключения	Свойство	Значение		
Спецификация	2 Отбор газа [кг/ч]	3		
-	Расход орошения [кг/ч]	4		
Питание	Отбор дистиллята [кг/ч]			
Расчет	Флегмовое число			
				Применить

Рисунок 43 - Раздел «Проект» вкладка «Спецификация»

Далее необходимо настроить питание колонны. Для настройки входящих потоков колонны необходимо перейти в раздел «**Проект**» [1] на вкладку «**Питание**» [2] (Рисунок 44). Чтобы добавить входящий поток необходимо выполнить следующее (Рисунок 44):

- Нажать «Добавить» [3];
- Из выпадающего списка [4] выбрать подходящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к колонне);
- Указать ступень [5].

Если поток добавлен ошибочно, можно нажать на иконку корзины [6] (Рисунок 44), чтобы удалить строку.

Рисунок 44 - Раздел «Проект» вкладка «Питание»

В разделе «**Проект**» [1] на вкладке «**Расчет**» [2] (Рисунок 45) приведены справочные данные, которые используются для расчета ректификационной колонны. Для настройки доступны следующие параметры (Рисунок 45):

- [3] Максимальное отклонение суммы концентраций от единицы по колонне в целом;
- [4] Максимальное число шагов при расчете колонны;
- [5] Метод расчета.

Ректифизационная колонна: К-2			
Проект Параметр	ры Боковые отборы Результат		
Подключения	Параметр	Значение	
Спецификация	Максимальное отклонение суммы концентраций от единицы по колонне в целом	1e-7 3	
Питание	Максимальное число шагов при расчёте колонны	200 4	
Расчет	Метод расчета	MIDC 5	
			Применить

Рисунок 45 - Раздел «Проект» вкладка «Расчет»

Далее в разделе «**Параметры**» [1] на вкладке «**КПД**» [2] (Рисунок 46) можно настроить КПД каждой ступени колонны. Для этого необходимо ввести значение в ячейке рядом с подходящей ступенью [3] (Рисунок 46).

ектифик	ационная кол	10-ma: K-2	
Проект	Параметри	Боковые отборы Р	езультат
кпд		Ступень	Значение
	2	Конденсатор	1.0000
		Ступень 1	1,0000
		Ступень 2	1,0000
		Ступень 3	1,0000
		Ступень 4	1,0000
		Ступень 5	1,0000
		Ступень 6	1,0000
		Ступень 7	1,0000
		Ступень 8	1,0000
		Ступень 9	1,0000
		Ступень 10	1,0000
		Рибойлер	1.0000

Рисунок 46 - Раздел «Параметры» вкладка «КПД»

Далее в разделе «Боковые отборы» [1] на вкладке «Боковые отборы» [2] (Рисунок 47) необходимо настроить выходные потоки. Чтобы добавить строку для настройки бокового отбора необходимо (Рисунок 47):

- Нажать «Добавить» [3];
- Из выпадающего списка [4] выбрать подходящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к колонне);
- Указать ступень отбора [5];
- Из выпадающего списка [6] выбрать фазу отбора;
- Из выпадающего списка [7] выбрать единицы измерения расхода;
- Указать расход [8].

Если поток добавлен ошибочно, можно нажать на иконку корзины [9] (Рисунок 47), чтобы удалить строку.

Рисунок 47 - Раздел «Боковые отборы» вкладка «Боковые отборы»

Далее в разделе «Боковые отборы» [1] на вкладке «Цирк. орошение» [2] (Рисунок 48) можно задать поток для циркуляции. Чтобы добавить строку для настройки потока циркуляционного орошения необходимо (Рисунок 48):

- Нажать «Добавить» [3];
- Ввести имя для циркуляционного орошения [4];
- Ввести ступень отбора [5];
- Ввести ступень возврата [6];
- Ввести температуру возвращаемого потока [7];
- Из выпадающего списка [8] выбрать единицы измерения расхода;
- Указать расход [9].

Если поток добавлен ошибочно, можно нажать на иконку корзины [10] (Рисунок 48), чтобы удалить строку.

Рисунок 48 - Раздел «Боковые отборы» вкладка «Цирк. орошение»

После этого необходимо нажать «**Применить**» [11] (Рисунок 48) на любой вкладке любого раздела карточки «**Ректификационная колонна**». Расчет пройдет автоматически в разделе «Проект» на вкладке «Подключения» таблицы «Питание» [1] и «Боковой отбор» [2] (Рисунок 49) заполнятся автоматически.

Рисунок 49 – Раздел «Проект» вкладка «Подключения» после решения

Также в разделе «**Результат**» [1] (Рисунок 50) появятся значения результатов расчета ректификационной колонны.

Ректифика	жтификационная колонна: К-6		
Проект	Парамет	ры Боковые отборы Результа	ат 1
Результат		Свойство	Значение
		Отбор газа [кг/ч]	0
		Расход орошения [кг/ч]	9.432e+4
		Отбор дистиллята [кг/ч]	8574
		Отбор кубового продукта [кг/ч]	3776
		Флегмовое число	11
		Нагрузка конденсатора [кДж/ч]	3.516e+7
		Температура верха [°C]	78.53
		Нагрузка рибойлера [кДж/ч]	3.523e+7
		Температура низа [°С]	95.69
		Число шагов, за которое была рассчитана колонна	116
		Сходимость по концентрациям	

Рисунок 50 - Раздел «Результат» вкладка «Результат»

4.3 Объект «Нагреватель»

Объект «**Нагреватель**» (Рисунок 51) отвечает за повышение температуры. Требуемая температура указывается в выходящем потоке или задается перепад температуры в нагревателе.

Рисунок 51 - Иконка объекта «Нагреватель»

Карточка объекта «**Нагреватель**» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «**Свойства объекта**».

Для настройки нагревателя доступны следующие параметры (Рисунок 52):

- Из выпадающего списка [1] нужно выбрать входящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к нагревателю);
- Из выпадающего списка [2] выбрать выходящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к нагревателю);
- Ввести значение перепада давления [3];
- Ввести значение перепада температуры [4].

Для завершения настройки нагревателя необходимо нажать «Применить» [5] (Рисунок 52). В полях «Нагрузка» [6] и «Мощность» [7] появятся рассчитанные значения.

В модели реализовано 4 сценария расчета в зависимости от указанной пользователем информации:

- 1. Ввод перепада давления и перепада температуры в нагревателе. Расчет мощности, нагрузки нагревателя и выходящего потока.
- Ввод перепада температуры в нагревателе и давления на выходе.
 Расчет перепада давления, мощности, нагрузки нагревателя и выходящего потока.
- Ввод перепада давления в нагревателе и температуры на выходе.
 Расчет перепада температуры, мощности, нагрузки нагревателя и выходящего потока.
- 4. Ввод давления и температуры на выходе.

Расчет перепада температуры и перепада давления, мощности, нагрузки нагревателя и выходящего потока.

4.4 Объект «Холодильник»

Объект «**Холодильник**» (Рисунок 53) отвечает за понижение температуры. Требуемая температура указывается в выходящем потоке или задается перепад температуры в холодильнике.

Рисунок 53 - Иконка объекта «Холодильник»

Карточка объекта «**Холодильник**» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «**Свойства объекта**».

Для настройки холодильника доступны следующие параметры (Рисунок 54):

- Из выпадающего списка [1] нужно выбрать входящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к холодильнику);
- Из выпадающего списка [2] выбрать выходящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к холодильнику);
- Ввести значение перепада давления [3];
- Ввести значение перепада температуры [4].

Для завершения настройки холодильника необходимо нажать «Применить» [5] (Рисунок 54). В полях «Нагрузка» [6] и «Мощность» [7] появятся рассчитанные значения.

Рисунок 54 - Карточка объекта «Холодильник»

В модели реализовано 4 сценария расчета в зависимости от указанной пользователем информации:

1. Ввод перепада давления и температуры в холодильнике.

Расчет мощности, нагрузки холодильника и выходящего потока.

- Ввод перепада температуры в холодильнике и давления на выходе.
 Расчет перепада давления, мощности, нагрузки холодильника и выходящего потока.
- Ввод перепада давления в холодильнике и температуры на выходе.
 Расчет перепада температуры, мощности, нагрузки холодильника и выходящего потока.
- 4. Ввод давления и температуры на выходе.

Расчет перепада температуры, перепада давления, мощности, нагрузки холодильника и выходящего потока.

4.5 Объект «Смеситель»

Объект «Смеситель» (Рисунок 55) отвечает за смешивание материальных потоков. Смеситель рассчитывает давление, энтальпию, составы и расходы выходящего потока.

Рисунок 55 – Иконка объекта «Смеситель»

Карточка объекта «Смеситель» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «Свойства объекта».

Для настройки смесителя необходимо выполнить следующее (Рисунок 56):

- Нажать «Добавить» [1];
- Из выпадающего списка [2] нужно выбрать входящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к смесителю).

Повторить предыдущие действия столько раз, сколько входящих потоков должно попасть в смеситель. Если поток добавлен случайно необходимо нажать по иконке корзины [3], лишняя строка удалиться.

• Из выпадающего списка [4] выбрать выходящий поток.

Для завершения настройки смесителя необходимо нажать «Применить» [5] (Рисунок 56).

Рисунок 56 - Карточка объекта «Смеситель»

4.6 Объект «Делитель»

Объект «**Делитель**» (Рисунок 57) отвечает за разделение материального потока на несколько выходящих потоков. Делитель рассчитывает давление, температуры и расходы выходящих потоков в соответствии с заданными коэффициентами разделения.

Значения температуры и давления выходящего потока равны значениям входящего потока соответственно. Состав также не изменяется.

Рисунок 57 - Иконка объекта «Делитель»

Карточка объекта «**Делитель**» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «**Свойства объекта**».

Для настройки делителя на вкладке «Подключения» [1] необходимо выполнить следующее (Рисунок 58):

- Из выпадающего списка [2] нужно выбрать входящий поток (поток должен быть на доске моделирования).
- Нажать «Добавить» [3] (необходимо выполнить столько раз, сколько выходящих потоков должно выйти из делителя);
- Из выпадающего списка [4] выбрать выходящий поток (повторить действие необходимое количество раз).

Рисунок 58 – Раздел «Проект» вкладка «Подключения»

Если поток добавлен случайно необходимо нажать по иконке корзины [5] (Рисунок 58), лишняя строка удалиться.

Далее необходимо перейти на вкладку «Параметры» [1] (Рисунок 59). Таблица с выходящими потоками подстраивается под количество выходящих потоков, указанных на вкладке «Подключения» (Рисунок 58).

Ячейки «**Коэффициент разбиения**» [2] (Рисунок 59) доступны для редактирования. Их можно заполнить подходящими коэффициентами разбиения выходящих потоков.

Делитель: Д-3			×
Проект			
Подключения Параметры	Выходящий поток	Коэффициент разбиения	
1)	•	3

Рисунок 59 - Раздел «Проект» вкладка «Параметры»

Для завершения настройки объекта «**Делитель**» необходимо нажать «**Применить**» [3] (Рисунок 59).

4.7 Объект «Насос»

Объект «**Насос**» (Рисунок 60) отвечает за повышение давления. Насос рассчитывает давление (кПа) выходящего потока через указание перепада давления в насосе или через задание давления в выходящем потоке происходит расчет перепада давления в насосе.

Рисунок 60 - Иконка объекта «Насос»

Карточка объекта «**Hacoc**» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «**Свойства объекта**».

Для настройки насоса доступны следующие параметры (Рисунок 61):

- Из выпадающего списка [1] нужно выбрать входящий поток (поток должен быть на доске моделирования);
- Из выпадающего списка [2] выбрать выходящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к насосу);
- Ввести значение перепада давления [3];
- Ввести значение КПД [4];
- Ввести значение мощности [5].

Для завершения настройки насоса необходимо нажать «Применить» [6] (Рисунок 61). В полях «Нагрузка» [7] и «Напор» [8] появятся рассчитанные значения.

Рисунок 61 - Карточка объекта «Насос»

В модели реализовано 3 сценария расчета в зависимости от указанной пользователем информации:

1. Ввод перепада давления в насосе.

Расчет мощности, нагрузки, напора насоса и выходящего потока.

2. Ввод давления на выходе.

Расчет перепада давления, мощности, нагрузки, напора насоса и выходящего потока.

3. Ввод мощности в насосе.

Расчет перепада давления, напора, нагрузки и выходящего потока.

4.8 Объект «Клапан»

Объект «**Клапан**» (Рисунок 62) отвечает за сброс давления. Клапан рассчитывает давление выходящего потока через перепад давления в клапане либо через задание давления в выходящем потоке происходит расчет выходящего потока.

Рисунок 62 - Иконка объекта «Клапан»

Карточка объекта «Клапан» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «Свойства объекта».

Для настройки клапана доступны следующие параметры (Рисунок 63):

- Из выпадающего списка [1] нужно выбрать входящий поток (поток должен быть на доске моделирования);
- Из выпадающего списка [2] выбрать выходящий поток (если поток не добавлен на доску моделирования, то его не получится прикрепить к насосу);
- Ввести значение перепада давления [3].

Для завершения настройки клапана необходимо нажать «Применить» [4] (Рисунок 63).

Клапан: КН-1	
Проект	
Подключения	1 2 - 2 - - Перепад давления [кПа] 3
	Применить

Рисунок 63 - Карточка объекта «Клапан»

В модели реализовано 2 сценария расчета в зависимости от указанной пользователем информации:

1. Ввод перепада давления в клапане.

Расчет выходящего потока.

2. Ввод давления на выходе.

Расчет перепада давления насоса и выходящего потока.

4.9 Объект «Сепаратор»

Объект «**Сепаратор**» (Рисунок 64)отвечает за разделение потоков по жидкой и паровой фазам.

Рисунок 64 – Иконка объекта «Сепаратор»

Карточка объекта «**Сепаратор**» открывается с доски моделирования. Для этого необходимо нажат ПКМ по объекту и выбрать пункт «**Свойства объекта**».

Для настройки сепаратора доступны следующие параметры (Рисунок 65):

- Из выпадающего списка [1] нужно выбрать входящий поток (поток должен быть на доске моделирования);
- Из выпадающего списка [2] выбрать выходящий поток паровой фазы (поток должен быть на доске моделирования);
- Из выпадающего списка [3] выбрать выходящий поток жидкой фазы (поток должен быть на доске моделирования);
- Ввести значения перепадов давления пара [4] и давления жидкости [5].

Для завершения настройки сепаратора необходимо нажать «Применить» [6] (Рисунок 65).

Рисунок 65 - Карточка объекта «Сепаратор»

В модели реализовано 4 сценария расчета в зависимости от указанной пользователем информации:

- Ввод перепада давления пара и перепада давления жидкости в сепараторе.
 Расчет выходящего потока пара и выходящего потока жидкости.
- 2. Ввод перепада давления пара в сепараторе и давления в выходящем потоке жидкости.

Расчет перепада давления жидкости в сепараторе и выходящих потоков пара и жидкости.

3. Ввод перепада давления жидкости в сепараторе и давления в выходящем потоке пара.

Расчет перепада давления пара в сепараторе и выходящих потоков пара и жидкости.

 Ввод давления в выходящем потоке и давления в выходящем потоке жидкости.
 Расчет перепадов давления пара и давления жидкости в сепараторе и выходящих потоков пара и жидкости.

5 Контактная информация

Если вы не нашли ответа на свой вопрос, справка не помогла вам в решении возникших проблем или возникшие проблемы не описаны в справке, обратитесь к контактному лицу компании ООО «НАУКА» любым удобным для вас способом.